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Abstract
The number density of vortices produced during a quench in the Abelian Higgs
model is predicted. Assuming that the dual Landau–Ginzburg model provides
an effective infrared description of QCD, the estimation of the number density
of mesons and glueballs produced during the phase transition to confined phase
is predicted.

PACS numbers: 11.27.+d, 05.70.Fh, 12.38.Aw, 12.39.Mk

1. Introduction

A well-known property of QCD on short distances is asymptotic freedom. However, the
properties of the theory at large distances are problematic yet. We know that neither a free
quark nor a free gluon has ever been observed in nature. Upper experimental limits have been
established for the production of quarks in high-energy collisions. Since the early days of
QCD it has been suggested that the mechanism by which colour is confined could be dual
superconductivity of second type. This idea was inspired by pioneering works of ’t Hooft
and Mandelstam [1] who argued that the quark–antiquark interaction force can be produced
by flux tubes of Abrikosov type [2]. The flux tubes could be produced by a dual Meissner
effect squeezing the chromoelectric field acting between quark and antiquark into a flux tube.
This mechanism makes the energy proportional to the length of the tube. Recent lattice
simulations lend some support to the hypothesis of dual superconductivity as the mechanism
of confinement in QCD [3–5]. There also exist suggestions that monopole condensation is the
source of both the confinement and the chiral symmetry breaking [6].

Although there are a lot of doubts concerning the dual description of QCD, it is believed
that the dual description should also be a gauge theory, possibly with interchange of the role
of magnetic and electric fields. There also exist results suggesting the relevance of the degrees
of freedom identified by the maximal Abelian projection for description of the confinement
[7, 8]. In this context the effects from maximal Abelian gauge Gribov copies can also be taken
into account [9]. In addition, it is expected that the strong coupling regime of the original
model is mapped in the weak coupling regime of the dual model [5].
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In the nonperturbative regime the QCD under assumption of Abelian dominance can be
reduced to the dual U 2(1) Ginzburg–Landau effective theory [10]. The purpose of this paper
is to estimate the number density of the flux tubes created during the transition from quark–
gluon plasma to confined phase. Probably, the matter in the deconfined phase is produced
at present at the RHIC. The energy densities reached in Brookhaven National Laboratory are
10 to 100 times higher than that of nuclear matter [11]. The energy density at this level is
probably naturally produced in the cores of neutron stars and probably was present at the early
stages of evolution of the Universe. This is a reason why results of the RHIC can shed new
light on the big bang scenario. The number density of topological defects produced during
the second-order phase transition does not depend on details of the model and it is mainly
determined by the Kibble–Zurek mechanism. This is a reason why the number density of
produced flux tubes is solely determined by the Kibble–Zurek critical exponent [12] and in
this sense it does not depend on the details of the infrared effective model. The structure of
QCD vacuum, in the dual Ginzburg–Landau model, seems to be similar to the structure of the
superconductor. The type of superconductivity is still under dispute [13, 14].

If we assume that we have superconductivity of the second type then colour confinement
is realized by the electric flux tubes which are the topological solutions of the model. The
mesons in this scenario are just flux tubes terminated by the quark–antiquark pair, and glueballs
are proposed to be the flux-tube rings [15].

The existence of colourless states made only of gauge fields is a natural consequence of
self-interaction of gauge fields in QCD. The glueball solutions of the dual Ginzburg–Landau
model are classically unstable and they decay in finite time [16].

The situation is similar to the lack of stability of the classical hydrogen atom. We know
that on the quantum level its size is stabilized and its radius is of order 105 fm. Using this
analogy Koma et al suggested a quantum model describing the flux-tube ring. The quantum
radius of this structure does not exceed 1 fm and is approximated as RG ≈ 0.25 fm. Later in
this paper this approximation is used as a constraint on the size of the flux-tube loop.

In the next section the dual Ginzburg–Landau model is recalled and the number density
of produced glueballs is calculated. The last section contains remarks.

2. Vortex production in the weak coupling limit of the Abelian Higgs model

The effective low-energy Lagrangian consists of dual gauge fields �Bµ = (
B3

µ,B8
µ

)
and three

complex scalar monopole fields (χα) [17]. This Lagrangian in the colour singlet sector reduces
to the dual, U(1) invariant Abelian Higgs model [18, 13]

L = − 1
4FµνF

µν + (Dµχ)∗(Dµχ) − λ̂(χ∗χ − v̂2)2 (1)

where Bµ are rescaled dual gauge fields and χ is the complex scalar monopole field. The field
strength

Fµν = ∂µBν − ∂νBµ (2)

and covariant derivatives have typical form

Dµχ = ∂µχ + iĝBµχ. (3)

The Euler–Lagrange equations for the Lagrangian (1)

DµDµχ = 2λ̂χ(v̂2 − χ∗χ) (4)

∂νFµν = iĝ(χ∂µχ∗ − χ∗∂µχ) + 2ĝ2Bµχχ∗. (5)



Production of vortices in the dual Ginzburg–Landau theory 10741

These equations, depending on the parameters of the model, describe type I or type II
superconductivity. The first type dual superconductivity appears if the self-interaction of
the monopole scalar field is stronger than its coupling to the dual gauge field, i.e. 2λ̂ < ĝ2.
However, in the opposite case, i.e. for the weak coupling ĝ, the superconductor is punched by
the Abrikosov flux tubes. Let us consider weak ĝ coupling sector of the dual model. In this
regime the vacuum has in a natural way a structure of the second type superconductor. The
most important fact is that this is a case of strong coupling of the original model, i.e. QCD. A
gauge field in this regime decouples and we can take into consideration only the scalar sector
of the model:

∂2
t χ − �χ = 2λ̂χ(v̂2 − χ∗χ). (6)

To provide inhomogenous initial conditions we introduce to the equation of motion the white
Gaussian noise η. To stabilize the system against external perturbations we have to also add
the damping therm γ ∂tχ . Although both terms have simple physical meaning (temperature
noise and dissipation) they are treated as auxiliary and they will be excluded by taking γ → 0
limit at the end of the calculation

∂2
t χ + γ ∂tχ − �χ = 2λ̂χ(v̂2 − χ∗χ) + η. (7)

The Gaussian white noise is defined by the cumulants

〈̃η(t, �k)〉 = 0 〈̃η∗(t, �k)̃η(t ′, �k′)〉 = 2πγ

β
δ(2)(�k − �k′)δ(t − t ′) (8)

where η̃ is a Fourier transform of the noise η(t, �x) = ∫ ∞
−∞ d2k ei�k�xη̃(t, �k). We assume isotropy

and homogeneity of the system and then we consider a section of the system by an arbitrary
chosen plane. In the next step we consider the phase transition from quark–gluon plasma to
confined phase, i.e. the transition at T = Tconf temperature. Finally we calculate the number
density of vortices and antivortices produced on this plane. These vortex structures are traces
of the open (mesons) and closed flux tubes (glueballs) created during the phase transition.

We consider a spatially homogenous transition caused by the linear time dependence of
the relative temperature v̂2 = v̂2

0
Tconf−T

Tconf
= v̂2

0
t
τ

, where 2τ is a quench time. This dependence
of the relative temperature on time is a consequence of heating of the system T (t).

To count zeros of the order parameter it is sufficient to use a linear approximation of
equation (7). Fourier transformation χ(t, x) = ∫ ∞

−∞ dk eikx χ̃(t, k) allows for significant
simplification of the equation of motion

∂2
t χ̃ + γ ∂t χ̃ + �k2χ̃ = 2λ̂v̂2

0
t

τ
χ̃ + η̃. (9)

The solutions of the homogeneous equation

χ̃a(t, �k) = b e
1
2 γ z

√
zJ 1

3 a

(
2µ

3
z

3
2

)
(10)

where J 1
3 a is appropriate Bessel function, µ2 = 2λ̂v̂2

0
τ

, b = e
γ 3

24µ2 , z = 1
µ2

(�k2 − γ 2

4

) − t and
(a) = (−1, +1) form a basis for construction of the Green function in the model

G(t, t ′; k) ≡ G(z, z′) = 
(

2
3

)


(
4
3

)
e
− γ 3

12µ2 �(z′ − z) e−γ z′
εabχ̃a(z)χ̃b(z

′) (11)

where εab is a Levi-Civita symbol equipped in a convention ε−+ = 1. The solution of
equation (9) which satisfies initial conditions χ̃ (t → −∞, k) = 0 and ∂t χ̃(t → −∞, k) = 0
is the following:

χ̃(t, k) =
∫ t

−∞
dt ′ G(t, t ′; k)̃η(t ′, k). (12)
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The central quantity which allows for estimation of the number density of the vortices produced
during the phase transition from normal to superconducting state is the power spectrum of the
system. The power spectrum is defined by the equal time field correlator

〈χ̃∗(t, �k)χ̃(t, �k′)〉 = P(t, �k)δ(2)(�k − �k′) (13)

where 〈. . .〉 denotes an average over realizations of the noise. This definition leads to the
expression

P(t, k) = 2πγ

β

∫ ∞

z

dz′|G(z, z′)|2. (14)

The explicit form of the power spectrum is rather complicated

P(t, k) = 2πγ

β
2

(
2

3

)
2

(
4

3

)
εabεa′b′

eγ zzJ 1
3 b

(
2µ

3
z

3
2

)
J ∗

1
3 b′

(
2µ

3
z

3
2

)
Faa′(z). (15)

In this formula we have summation over indices (a, b) = (−1, +1), and the last quantity is
defined by the integral

Faa′(z) =
∫ ∞

z

dz′ z′J 1
3 a

(
2µ

3
z

3
2

)
J ∗

1
3 a′

(
2µ

3
z′ 3

2

)
e−γ z′

. (16)

This function contains an information about the correlation length which in the γ → 0 limit

and at freeze-out time is ξ ≈ (
2λ̂v̂2

0
t̂
τ

)− 1
2 . On the other hand the quench time is related to the

correlation length as follows: τ ≈ τ0
(
2λ̂v̂2

0ξ
2
)2

. In the Kibble–Zurek scenario of production
of the topological defects the freeze-out time t̂ is an instant of time when the system regains
capacity to respond to the change of external parameters. The correlation length at that time
sets the characteristic length scale for the initial defect network.

For sufficiently late times z is negative, and therefore we introduce positive variable
y = t̂ − 1

µ2

(
k2 + γ 2

4

)
. We also use the relation between Bessel and modified Bessel functions

J 1
3 a(−ix) = eia π

2 I 1
3 a(x) and large x behaviour of the modified Bessel functions I 1

3 a(x). The
final result of this calculation is an explicit expression for the power spectrum

P(t̂, k) ≈ A
exp

(
4µ

3

(
t̂ − �k2

µ2

) 3
2

)
√

t̂ − �k2

µ2

(17)

where

A = 9
√

γ2
(

2
3

)
2

(
4
3

)
2µ

√
π

.

The number density of the produced vortices can be determined with the help of the
approximate form of the power spectrum and the Liu–Mazenko–Halperin formula [19]

n = 1

2π

∫
Skm

d2k �k2P(t̂ , �k)∫
Skm

d2k P(t̂, �k)
. (18)

The integration in this formula is restricted to the interior of the circle of radius |�km| = 1
ξ
.

The cut-off in this formula is indispensable because the zeros are produced on all scales and
we know that only those zeros which correspond to unstable modes of the system are able
to produce any stable vortex structures. Those zeros are separated at least by the correlation
length. The number of zeros on the two-dimensional section in the considered system is
determined by the correlation length ξ

n ≈ 0.1
1

ξ2
. (19)
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It is worth stressing that we counted only zeros which, in course of the evolution, will form
the centres of the vortices.

3. Production of particles during the transition to the confined phase

In the zero topological charge sector of the model the number of vortices on the plane is
identical to the number of antivortices and therefore the number of vortices which form a
basis for estimation of the number of produced mesons and glueballs can be estimated by the
formula nV = nAV = 1

2n ≈ 0.05 1
ξ 2 .

3.1. Mesons

Having number density of vortex structures on the plane we are also able to estimate the
number of open flux tubes contained in the volume of 1 fm3. The only difference between
mesons which correspond to vortices and mesons which correspond to antivortices is their
opposite orientation. The number density of mesons is the following:

NM = n
1

fm
≈ 0.1

1

ξ2

1

fm
. (20)

3.2. Glueballs

Now we count the three-dimensional structures of size limited by the closed-loop radius
responsible for the existence of zeros on the considered plane. We assume the isotropic
distribution of the loops crossing the plane and then estimate the average length of
projection of the loop of radius RG, on the axis perpendicular to the considered plane
〈l〉 = 2RG

√
〈cos2 θ〉 ≈ 1.4RG. This number is determined by the correlation length ξ

and the glueball radius as well

NG+ 1
2 M = nV

1

〈l〉 ≈ 0.035
1

ξ2RG

. (21)

To estimate this quantity we used the number of vortices nV and not the total number of vortex
structures n because the trace of each loop on the considered plane is a pair of vortex–antivortex.
In addition we obtain half of the meson states.

Finally the number of glueballs produced during the transition can be extracted as follows:

NG = NG+ 1
2 M − 1

2NM.

On the basis of these results we can also obtain the ratio of the produced mesons to the number
of glueballs produced during the phase transition NG

NM
.

3.3. Baryons

One could attempt to also estimate the number density of baryon states produced during the
considered phase transition. Using the information gained in single-colour sector we can
construct baryon on the basis of the ‘three quark picture’ and then it corresponds to two zeros
being the traces of two flux tubes punching the plane. The number density of baryons is

NB = 1

2
nV

1

fm
≈ 0.025

1

ξ2

1

fm
. (22)

We also have to take into account the colour degrees of freedom. The most important from our
point of view is the knowledge of possible overlap of flux tubes of different types. To gain this
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Figure 1. The dependence of the number density of produced particles on the correlation length:
meson density (dotted line), glueball density (dashed line) and baryon density (solid line).

information we have to consider the solutions of the complete model [17], but even without
this analysis we can expect the additional factor C ∈ [1, 3] multiplying formula (22). If flux
tubes of different types can be located at the same positions then C = 3. In the opposite case,
i.e. if overlapping is forbidden then C = 1. Because we neglected almost a whole baryon
internal structure, formula (22) gives the upper bound of the number density of produced
baryons.

4. Remarks

At this point it is worth stressing that the results depend on the choice of the ‘cut-off’ in
integrals so that it mainly depends on the quench time. In further considerations we choose
the correlation length which gives the number density of produced baryons compatible with
that obtained in a completely different way by Ellis et al, 0.17–0.35 fm−3 [20]. We also adopt
the approximation of the radius of the vortex loop given in paper [13], RG ≈ 0.25 fm.

The dependence of the particle numbers on correlation length, i.e. on quench time, is
demonstrated in figure 1.

According to the chosen strategy the baryon density changes from 0.35 fm−3 to 0.17 fm−3.
The number density of produced mesons decreases from 1.4 fm−3 to 0.68 fm−3 and the number
density of glueballs decreases from approximately 1.3 fm−3 to 0.63 fm−3. The figure was
prepared under the assumption of lack of overlapping of the flux tubes of different types. The
quench time corresponding to the upper boundary of the considered correlation length interval
ξ = 0.38 fm is 4.24 times larger than the quench time corresponding to the lower boundary of
considered interval ξ = 0.27 fm. An important observation is that the ratio of the produced
particles does not depend on correlation length at all, and it is approximately equal to 0.9.
In the above calculation it was assumed that a very small fraction of the vortex loops forms
topologically untrivial knots which can also be experimentally interpreted as excited glueball
states (figure 2).

Finally, a question arises about the possibility of experimental verification of the results. It
seems that the most favourable conditions are provided during relativistic heavy-ion collisions.
Studies in the direction of understanding better the properties of this form of matter are
presently performed at the RHIC at Brookhaven National Laboratory. The energy density,
estimated in the centre-of-mass frame, attains the level 1–10 GeV fm−3 [21], which seems
to be sufficient to produce the quark–gluon plasma. Cooling down this system provides the
phase transition from deconfined to confined phase which is the subject of the present studies.
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[fm]
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Figure 2. The ratio of the number density of produced glueballs to the number density of produced
mesons versus the correlation length.
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